Динамическая система — Википедия

Фазовая диаграмма странного аттрактора Лоренца — популярный пример нелинейной динамической системы. Изучением подобных систем занимается теория хаоса.

Динамическая система — множество элементов, для которого задана функциональная зависимость между временем и положением в фазовом пространстве каждого элемента системы.[источник не указан 2515 дней] Данная математическая абстракция позволяет изучать и описывать эволюцию систем во времени.

Состояние динамической системы в любой момент времени описывается множеством вещественных чисел (или векторов), соответствующим определённой точке в пространстве состояний. Эволюция динамической системы определяется детерминированной функцией, то есть через заданный интервал времени система примет конкретное состояние, зависящее от текущего.

Введение[править | править код]

Динамическая система представляет собой такую математическую модель некоего объекта, процесса или явления, в которой пренебрегают «флуктуациями и всеми другими статистическими явлениями».[1]

Динамическая система также может быть представлена как система, обладающая состоянием. При таком подходе, динамическая система описывает (в целом) динамику некоторого процесса, а именно: процесс перехода системы из одного состояния в другое. Фазовое пространство системы — совокупность всех допустимых состояний динамической системы. Таким образом, динамическая система характеризуется своим начальным состоянием и законом, по которому система переходит из начального состояния в другое.

Различают системы с дискретным временем и системы с непрерывным временем.

В системах с дискретным временем, которые традиционно называются каскадами, поведение системы (или, что то же самое, траектория системы в фазовом пространстве) описывается последовательностью состояний. В системах с непрерывным временем, которые традиционно называются потоками, состояние системы определено для каждого момента времени на вещественной или комплексной оси. Каскады и потоки являются основным предметом рассмотрения в символической и топологической динамике.

Динамическая система (как с дискретным, так и с непрерывным временем) часто описывается автономной системой дифференциальных уравнений, заданной в некоторой области и удовлетворяющей там условиям теоремы существования и единственности решения дифференциального уравнения. Положениям равновесия динамической системы соответствуют особые точки дифференциального уравнения, а замкнутые фазовые кривые — его периодическим решениям.

Основное содержание теории динамических систем — это исследование кривых, определяемых дифференциальными уравнениями. Сюда входит разбиение фазового пространства на траектории и исследование предельного поведения этих траекторий: поиск и классификация положений равновесия, выделение притягивающих (аттракторы) и отталкивающих (репеллеры) множеств (многообразий). Важнейшие понятия теории динамических систем — устойчивость состояний равновесия (то есть способность системы при малых изменениях начальных условий сколь угодно долго оставаться около положения равновесия или на заданном многообразии) и грубость (то есть сохранение свойств при малых изменениях самой математической модели; «грубая система — это такая, качественный характер движений которой не меняется при достаточно малом изменении параметров»).[2][1]

Привлечение вероятностно-статистических представлений в эргодической теории динамических систем приводит к понятию динамической системы с инвариантной мерой.

Современная теория динамических систем является собирательным названием для исследований, где широко используются и эффективным образом сочетаются методы из различных разделов математики: топологии и алгебры, алгебраической геометрии и теории меры, теории дифференциальных форм, теории особенностей и катастроф.

Методы теории динамических систем востребованы в других разделах естествознания, таких как неравновесная термодинамика, теория динамического хаоса, синергетика.

Определение[править | править код]

Пусть  — произвольное гладкое многообразие.

Динамической системой, заданной на гладком многообразии , называется отображение , записываемое в параметрическом виде , где , которое является дифференцируемым отображением, причём  — тождественное отображение пространства . В случае стационарных обратимых систем однопараметрическое семейство образует группу преобразований топологического пространства , а значит, в частности, для любых выполняется тождество .

Из дифференцируемости отображения следует, что функция является дифференцируемой функцией времени, её график расположен в расширенном фазовом пространстве и называется интегральной траекторией (кривой) динамической системы. Его проекция на пространство , которое носит название фазового пространства, называется фазовой траекторией (кривой) динамической системы[источник?].

Задание стационарной динамической системы эквивалентно разбиению фазового пространства на фазовые траектории. Задание динамической системы в общем случае эквивалентно разбиению расширенного фазового пространства на интегральные траектории[источник?].

Замена координат представляет собой диффеоморфизм (если структура гладкая) или гомеоморфизм (с топологической точки зрения) фазовых пространств. Можно определить множество эквивалентности между динамическими системами, которые связаны с разными классами координат. Проблема структуры орбит в таком случае может пониматься как задача классификации динамических систем с точностью до отношений эквивалентности[источник?].

Способы задания динамических систем[править | править код]

Для задания динамической системы необходимо описать её фазовое пространство , множество моментов времени и некоторое правило, описывающее движение точек фазового пространства со временем. Множество моментов времени может быть как интервалом вещественной прямой (тогда говорят, что время непрерывно), так и множеством целых или натуральных чисел (дискретное время). Во втором случае «движение» точки фазового пространства больше напоминает мгновенные «скачки» из одной точки в другую: траектория такой системы является не гладкой кривой, а просто множеством точек, и называется обычно орбитой. Тем не менее, несмотря на внешнее различие, между системами с непрерывным и дискретным временем имеется тесная связь: многие свойства являются общими для этих классов систем или легко переносятся с одного на другой.

Фазовые потоки[править | править код]

Пусть фазовое пространство представляет собой многомерное пространство или область в нем, а время непрерывно. Допустим, что нам известно, с какой скоростью движется каждая точка фазового пространства. Иными словами, известна вектор-функция скорости . Тогда траектория точки будет решением автономного дифференциального уравнения с начальным условием . Заданная таким образом динамическая система называется фазовым потоком для автономного дифференциального уравнения.

Каскады[править | править код]

Пусть  — произвольное множество, и  — некоторое отображение множества на себя. Рассмотрим итерации этого отображения, то есть результаты его многократного применения к точкам фазового пространства. Они задают динамическую систему с фазовым пространством и множеством моментов времени . Действительно, будем считать, что произвольная точка за время переходит в точку . Тогда за время эта точка перейдет в точку и т. д.

Если отображение обратимо, можно определить и обратные итерации: , и т. д. Тем самым получаем систему с множеством моментов времени .

Примеры[править | править код]

  • Система дифференциальных уравнений

задает динамическую систему с непрерывным временем, называемую «гармоническим осциллятором». Её фазовым пространством является плоскость , где  — скорость точки . Гармонический осциллятор моделирует разнообразные колебательные процессы — например, поведение груза на пружине. Его фазовыми кривыми являются эллипсы с центром в нуле.

  • Пусть  — угол, задающий положение точки на единичной окружности. Отображение удвоения , задаёт динамическую систему с дискретным временем, фазовым пространством которой является окружность.
  • Быстро-медленные системы описывают процессы, одновременно развивающиеся в нескольких масштабах времени.
  • Динамические системы, чьи уравнения могут быть получены посредством принципа наименьшего действия для удобно выбранного лагранжиана, известны как «лагранжевы динамические системы».

Вопросы теории динамических систем[править | править код]

Имея какое-то задание динамической системы, далеко не всегда можно найти и описать её траектории в явном виде. Поэтому обычно рассматриваются более простые (но не менее содержательные) вопросы об общем поведении системы. Например:

  1. Есть ли у системы замкнутые фазовые кривые, то есть может ли она вернуться в начальное состояние в ходе эволюции?
  2. Как устроены инвариантные многообразия системы (частным случаем которых являются замкнутые траектории)?
  3. Как устроен аттрактор системы, то есть множество в фазовом пространстве, к которому стремится «большинство» траекторий?
  4. Как ведут себя траектории, выпущенные из близких точек — остаются ли они близкими или уходят со временем на значительное расстояние?
  5. Что можно сказать о поведении «типичной» динамической системы из некоторого класса?
  6. Что можно сказать о поведении динамических систем, «близких» к данной?

См. также[править | править код]

Примечания[править | править код]

  1. 1 2 Андронов, 1981, с. 18—19.
  2. Андронов, 1955, с. 3—19.

Литература[править | править код]

  • Андронов А. А., Витт А. А., Хайкин С. Э. Теория колебаний. — 2-е изд., перераб. и испр.. — М.: Наука, 1981. — 918 с.
  • Памяти Александра Александровича Андронова. — М.: Изд-во Академии наук СССР, 1955.
  • Малинецкий Г. Г., Потапов А. Б., Подлазов А. В. Нелинейная динамика: подходы, результаты, надежды. — М.: УРСС, 2006.
  • Гладкие динамические системы / ред. Д. В. Аносов. — М.: Мир, 1977. — 256 с.
  • Евланов Л. Г. Контроль динамических систем. — М.: Наука, 1972. — 423 с. — 4800 экз.
  • Биркгоф Дж. Динамические системы. — М.: ОГИЗ, 1999. — 480 с. — 3500 экз. — ISBN 5-7029-0356-0.
  • Гукенхеймер Дж., Холмс Ф.ruen. Нелинейные колебания, динамические системы и бифуркации векторных полей. — 2002. — 560 с. — ISBN 5-93972-200-8.
  • Палис Ж., ди Мелу В. Геометрическая теория динамических систем: Введение. — Мир, 1986. — 301 с.
  • Шесть лекций по теории нелинейных динамических систем / Н. В. Карлов, Н. А. Кириченко. МФТИ, [1998?]. — 178 с. : ил.; 30 см; ISBN 5-7417-0096-9

Ссылки[править | править код]