Сканирующий атомно-силовой микроскоп — Википедия

Атомно-силовой микроскоп

Атомно-силовой микроскоп (АСМ, англ. AFM — atomic-force microscope) — сканирующий зондовый микроскоп высокого разрешения, способный определять рельеф поверхности с разрешением от нанометра и выше.

В отличие от сканирующего туннельного микроскопа с помощью атомно-силового микроскопа можно исследовать как проводящие, так и непроводящие поверхности.

Атомно-силовой микроскоп был создан в 1982 году Гердом Биннигом, Кельвином Куэйтом и Кристофером Гербером в Цюрихе (Швейцария), как модификация изобретённого ранее сканирующего туннельного микроскопа.

Для определения рельефа поверхностей непроводящих тел использовалась упругая консоль (кантилевер), отклонение которой, в свою очередь, определялось по изменению величины туннельного тока, как в сканирующем туннельном микроскопе[1]. Однако такой метод регистрации изменения положения кантилевера оказался не самым удачным, и двумя годами позже была предложена оптическая схема: луч лазера направляется на внешнюю поверхность кантилевера, отражается и попадает на фотодетектор[2]. Такой метод регистрации отклонения кантилевера реализован в большинстве современных атомно-силовых микроскопов.

Изначально атомно-силовой микроскоп фактически представлял собой профилометр, только радиус закругления иглы был порядка 10−9 м. Стремление улучшить латеральное разрешение привело к развитию динамических методов. Пьезовибратором возбуждаются колебания кантилевера с определённой частотой и фазой. При приближении к поверхности на кантилевер начинают действовать силы, изменяющие его частотные свойства. Таким образом, отслеживая частоту и фазу колебаний кантилевера, можно сделать вывод об изменении силы, действующей со стороны поверхности и, следственно, о рельефе[3].

Дальнейшее развитие атомно-силовой микроскопии привело к возникновению таких методов, как магнитно-силовая микроскопия, силовая микроскопия пьезоотклика, электро-силовой микроскопии.

Принцип работы[править | править код]

Схема работы атомно-силового микроскопа
График зависимости силы Ван-дер-Ваальса от расстояния между кантилевером и поверхностью образца

Принцип работы атомно-силового микроскопа основан на регистрации силового взаимодействия между поверхностью исследуемого образца и зондом. В качестве зонда используется наноразмерное остриё, располагающееся на конце упругой консоли, называемой кантилевером. Сила, действующая на зонд со стороны поверхности, приводит к изгибу консоли. Появление возвышенностей или впадин под остриём приводит к изменению силы, действующей на зонд, а значит, и изменению величины изгиба кантилевера. Таким образом, регистрируя величину изгиба, можно сделать вывод о рельефе поверхности.

Под силами, действующими между зондом и поверхностью образца, подразумевают дальнодействующие силы Ван-дер-Ваальса, которые при малых расстояниях являются силами отталкивания, а при дальнейшем увеличении расстояния переходят в силы притяжения. В зависимости от расстояния и вида сил между кантилевером и поверхностью образца можно разделить три режима работы атомно-силового микроскопа:

  1. Контактный (англ. contact mode)
  2. Бесконтактный (англ. non-contact mode)
  3. Полуконтактный (англ. semi-contact mode или англ. tapping mode)

На приведённом рисунке справа расстояние принятое за ноль соответствует нулевому расстоянию между ядрами поверхностных атомов и наиболее выступающего атома кантилевера. Поэтому равновесная точка с минимумом потенциальной энергии находится на конечном расстоянии, соответствующем «границе» электронных оболочек атомов.

Контактный режим работы атомно-силового микроскопа[править | править код]

При перекрытии оболочек атомов, которое возникает при контактном режиме работы атомно-силового микроскопа возникает отталкивание, аналогичное режиму работы профилометра. Наиболее выступающий атом кантилевера находится в непосредственном контакте с поверхностью. Обратная связь позволяет осуществлять сканирование в режиме постоянной силы, когда система поддерживает постоянной величину изгиба кантилевера. При исследовании чистой поверхности с перепадами высот порядка 10−10 м возможно использовать сканирование при постоянном среднем расстоянии между зондом и поверхностью образца. Движение кантилевера, в этом случае происходит на средней высоте над поверхностью образца. Изгиб кантелевера ΔZ, который пропорционален силе, действующей на зонд, измеряется для каждой точки. А изображение в этом режиме показывает пространственное распределение силы взаимодействия зонда с поверхностью.

Можно выделить несколько достоинств метода:

  • Наибольшая, по сравнению с другими методами, помехоустойчивость;
  • Наибольшая достижимая скорость сканирования;
  • Обеспечивает наилучшее качество сканирования поверхностей с резкими перепадами рельефа.

А также недостатки метода:

  • Наличие артефактов, связанных с наличием сил, направленных вдоль поверхности около ступеней;
  • При сканировании на воздухе на зонд действуют также капиллярные силы из-за неизбежного присутствия на поверхности атомарного слоя воды, внося погрешность в определение высоты поверхности;
  • Практически непригоден для изучения формы биологических объектов и органических материалов.

Бесконтактный режим работы атомно-силового микроскопа[править | править код]

При работе в бесконтактном режиме зонд находится на расстоянии где действуют притягивающие силы. Пьезокерамика возбуждает резонансные колебания зонда. При этом особенности поверхности, посредством сил Ван-дер Ваальса приводят к сдвигу амплитудно-частотной и фазово-частотной характеристик колебаний. Возможно также измерять изменение высших гармоник сигнала.

Благодаря обратной связи, поддерживается постоянная амплитуда колебаний зонда, и измеряется частота и фаза в каждой точке поверхности. В другом режиме возможно использовать обратную связь для поддержания постоянной величины частоты или фазы колебаний.

Выделяют следующие достоинства метода:

  • Отсутствует воздействие зонда на исследуемую поверхность.

А к недостаткам относят:

  • Крайне чувствителен ко всем внешним шумам;
  • Наименьшее разрешение;
  • Наименьшая скорость сканирования;
  • Функционирует лишь в условиях вакуума, когда отсутствует адсорбированный на поверхности слой воды;
  • Загрязнение кантелевера во время сканирования меняет его частотные свойства.

В связи с множеством сложностей и недостатков метода, этот режим работы АСМ не нашёл широкого применения.

Полуконтактный режим работы атомно-силового микроскопа[править | править код]

При работе в полуконтактном режиме, кантилевер также колеблется. В нижнем полупериоде колебаний кантилевер находится в области отталкивающих сил. Поэтому этот метод занимает промежуточное положение между контактом и бесконтактным методами.

Среди достоинств метода можно выделить:

  • Универсальность по сравнению с другими методами АСМ, который позволяет на большинстве исследуемых образцов получать разрешение 1-5 нм
  • Латеральные силы, действующие на зонд со стороны поверхности минимизированы, что упрощает интерпретацию получаемых результатов

Недостаток метода:

  • Максимальная скорость сканирования уступает контактному режиму.

Прочие силы[править | править код]

Несмотря на то что при описании работы атомно-силового микроскопа очень часто упоминаются лишь силы Ван-дер-Ваальса, в реальности со стороны поверхности действуют такие силы, как упругие силы, силы адгезии, капиллярные силы. Их вклад особенно очевиден при работе в полуконтактном режиме, когда вследствие «прилипания» кантилевера к поверхности возникают гистерезисы, которые могут существенно усложнять процесс получения изображения и интерпретацию результатов.


Кроме того, со стороны поверхности возможно действие магнитных и электростатических сил. Используя определённые методики и специальные зонды, можно узнать их распределение по поверхности.

Конструкция атомно-силового микроскопа[править | править код]

Основными конструктивными составляющими атомно-силового микроскопа являются:

  • Жёсткий корпус, удерживающий систему
  • Держатель образца, на котором образец впоследствии закрепляется
  • Устройства манипуляции

В зависимости от конструкции микроскопа возможно движение зонда относительно неподвижного образца или движение образца, относительно закреплённого зонда. Манипуляторы делятся на две группы. Первая группа предназначена для «грубого» регулирования расстояния между кантилевером и образцом (диапазон движения порядка сантиметров), вторая — для прецизионного перемещения в процессе сканирования (диапазон движения порядка микрон). В качестве прецизионных манипуляторов (или сканеров) используются элементы из пьезокерамики. Они способны осуществлять перемещения на расстояния порядка 10−10 м, однако им присущи такие недостатки, как термодрейф, нелинейность, гистерезис, ползучесть (крип).

  • Зонд
  • Система регистрации отклонения зонда. Существует несколько возможных систем:
  • Оптическая (включает лазер и фотодиод, наиболее распространённая)
  • Пьезоэлектрическая (использует прямой и обратный пьезоэффект)
  • Интерферометрическая (состоит из лазера и оптоволокна)
  • Ёмкостная (измеряется изменение ёмкости между кантилевером и расположенной выше неподвижной пластиной)
  • Туннельная (исторически первая, регистрирует изменение туннельного тока между проводящим кантилевером и расположенной выше туннельной иглой)
  • Система обратной связи
  • Управляющий блок с электроникой

Особенности работы[править | править код]

В сравнении с растровым электронным микроскопом (РЭМ) атомно-силовой микроскоп обладает рядом преимуществ. Так, в отличие от РЭМ, который даёт псевдотрёхмерное изображение поверхности образца, АСМ позволяет получить истинно трёхмерный рельеф поверхности. Кроме того, непроводящая поверхность, рассматриваемая с помощью АСМ, не требует нанесения проводящего металлического покрытия, которое часто приводит к заметной деформации поверхности. Для нормальной работы РЭМ требуется вакуум, в то время как большинство режимов АСМ могут быть реализованы на воздухе или даже в жидкости. Данное обстоятельство открывает возможность изучения биомакромолекул и живых клеток. В принципе, АСМ способен дать более высокое разрешение, чем РЭМ. Так, было показано, что АСМ в состоянии обеспечить реальное атомное разрешение в условиях сверхвысокого вакуума. Сверхвысоковакуумный АСМ по разрешению сравним со сканирующим туннельным микроскопом и просвечивающим электронным микроскопом.

К недостатку АСМ при его сравнении с РЭМ также следует отнести небольшой размер поля сканирования. РЭМ в состоянии просканировать область поверхности размером в несколько миллиметров в латеральной плоскости с перепадом высот в несколько миллиметров в вертикальной плоскости. У АСМ максимальный перепад высот составляет несколько микрон, а максимальное поле сканирования в лучшем случае порядка 150×150 мкм². Другая проблема заключается в том, что при высоком разрешении качество изображения определяется радиусом кривизны кончика зонда, что при неправильном выборе зонда приводит к появлению артефактов на получаемом изображении.

Обычный АСМ не в состоянии сканировать поверхность также быстро, как это делает РЭМ. Для получения АСМ-изображения требуется от нескольких минут до нескольких часов, в то время как РЭМ после откачки способен работать практически в реальном масштабе времени хотя и с относительно невысоким качеством. Из-за низкой скорости развёртки АСМ получаемые изображения оказываются искажёнными тепловым дрейфом,[4] что уменьшает точность измерения элементов сканируемого рельефа. Для увеличения быстродействия АСМ было предложено несколько конструкций,[5] среди которых можно выделить зондовый микроскоп, названный видеоАСМ. ВидеоАСМ обеспечивает получение удовлетворительного качества изображений поверхности с частотой телевизионной развёртки, что даже быстрее, чем на обычном РЭМ. Однако, применение ВидеоАСМ ограничено, так как он работает только в контактном режиме и на образцах с относительно небольшим перепадом высот. Для коррекции вносимых термодрейфом искажений было предложено несколько способов[4].

Нелинейность, гистерезис и ползучесть (крип) пьезокерамики сканера также являются причинами сильных искажения АСМ-изображений. Кроме того, часть искажений возникает из-за взаимных паразитных связей, действующих между X, Y, Z-манипуляторами сканера. Для исправления искажений в реальном масштабе времени современные АСМ используют программное обеспечение (например, особенность-ориентированное сканирование) либо сканеры, снабжённые замкнутыми следящими системами, в состав которых входят линейные датчики положения. Некоторые АСМ вместо сканера в виде пьезотрубки используют XY и Z-элементы, механически несвязанные друг с другом, что позволяет исключить часть паразитных связей. Однако в определённых случаях, например, при совмещении с электронным микроскопом или ультрамикротомами конструктивно оправдано использование именно сканеров на пьезотрубках.

АСМ можно использовать для определения типа атома в кристаллической решётке[6].

Обработка полученной информации и восстановление полученных изображений[править | править код]

Как правило, снятое на сканирующем зондовом микроскопе изображение трудно поддается расшифровке из-за присущих данному методу искажений. Практически всегда результаты первоначального сканирования подвергаются математической обработке. Обычно, для этого используется программное обеспечение непосредственно поставляемое со сканирующего зондового микроскопа (СЗМ), что не всегда удобно из-за того, что в таком случае программное обеспечение оказывается установленным только на компьютере, который управляет микроскопом.[источник не указан 3799 дней]

Применение[править | править код]

Сканирующие зондовые микроскопы нашли применение практически во всех областях науки. В физике, химии, биологии используют в качестве инструмента исследования АСМ. В частности, такие междисциплинарные науки, как биофизика, материаловедение, биохимия, фармацевтика, нанотехнологии, физика и химия поверхности, электрохимия, исследование коррозии, электроника (например, МЭМС), фотохимия и многие другие. Перспективным направлением считается[кем?] совмещение сканирующих зондовых микроскопов с другими традиционными и современными методами исследованиями, а также создание принципиально новых приборов. Например, совмещение СЗМ с оптическими микроскопами (традиционными и конфокальными микроскопами)[7][8][9], электронными микроскопами[10], спектрометрами (например, спектрометрами комбинационного (рамановского) рассеяния и флюоресцентными)[11][12][13], ультрамикротомами[14].

См. также[править | править код]

Примечания[править | править код]

  1. G. Binnig, C. F. Quate, Ch Gerber. Atomic Force Microscope, PRL 56, 9 (1986)
  2. G. Meyer, N.M. Amer. Novel optical approach to atomic force microscopy. Appl. Phys. Lett. 53, 1045 (1988)
  3. Y. Martin, C. C. Williams, and H. K. Wickramasinghe, Atomic force microscope-force mapping and profmng on a sub 100 А scale. Appl. Phys., Vol. 61, No. 10, 15 (1987)
  4. 1 2 V. Y. Yurov, A. N. Klimov. Scanning tunneling microscope calibration and reconstruction of real image: Drift and slope elimination (англ.) // Review of Scientific Instruments  (англ.) : journal. — USA: AIP, 1994. — Vol. 65, no. 5. — P. 1551—1557. — ISSN 0034-6748. — doi:10.1063/1.1144890. Архивировано 13 июля 2012 года.
  5. G. Schitter, M. J. Rost. Scanning probe microscopy at video-rate (англ.) // Materials Today  (англ.) : journal. — UK: Elsevier, 2008. — No. special issue. — P. 40—48. — ISSN 1369-7021. — doi:10.1016/S1369-7021(09)70006-9. Архивировано 9 сентября 2009 года.
  6. Sugimoto Y. et al., Chemical identification of individual surface atoms by atomic force microscopy, Nature 446, 66 (2007) doi:10.1038/nature05530.
  7. Комплекс для исследований в области биологии и материаловедения, сочетающий в себе СЗМ и оптический микроскоп. Дата обращения: 4 марта 2010. Архивировано 28 марта 2010 года.
  8. Комплекс для исследований на основе прямого или инвертированного микроскопа, сочетающий в себе СЗМ и оптический микроскоп. Дата обращения: 7 марта 2010. Архивировано 25 февраля 2010 года.
  9. Комплекс для исследований в области биологии, сочетающий в себе СЗМ и оптический микроскоп. Дата обращения: 4 марта 2010. Архивировано из оригинала 4 марта 2010 года.
  10. Комплекс для исследований совмещающий электронный и сканирующий зондовый микроскопы (недоступная ссылка)
  11. Комплекс на основе СЗМ, оптического микроскопа и спектрометра. Дата обращения: 7 марта 2010. Архивировано 9 апреля 2010 года.
  12. Комплекс СЗМ с конфокальным рамановским и флюоресцентным спектрометром (недоступная ссылка)
  13. Исследовательский комплекс совмещающий СЗМ, конфокальный лазерный микроскоп, рамановский и флюоресцентный спектрометры, оптический микроскоп. Дата обращения: 7 марта 2010. Архивировано 25 февраля 2010 года.
  14. АСМ установленный в криоультрамикротом. Дата обращения: 7 марта 2010. Архивировано из оригинала 14 октября 2010 года.

Литература[править | править код]

  • В. Л. Миронов. Основы сканирующей зондовой микроскопии : Учебное пособие для студентов старших курсов высших учебных заведений. — Нижний Новгород : Российская академия наук, Институт физики микроструктур, 2004. — 110 с.
  • R. Wiesendanger. Scanning Probe Microscopy and Spectroscopy (англ.). — Cambridge: Cambridge Universtiy Press, 1994.
  • D. Sarid. Scanning Force Microscopy, Oxford Series in Optical and Imaging Sciences (англ.). — New York: Oxford University Press, 1991.
  • R. Dagani, Individual Surface Atoms Identified, Chemical & Engineering News, 5 March 2007, page 13. Published by American Chemical Society
  • Q. Zhong, D. Innis, K. Kjoller, V. B. Elings, Surf. Sci. Lett. 290, L688 (1993).
  • V. J. Morris, A. R. Kirby, A. P. Gunning. Atomic Force Microscopy for Biologists (англ.). — Imperial College Press, 1999.
  • J. W. Cross SPM — Scanning Probe Microscopy Website
  • P. Hinterdorfer, Y. F. Dufrêne, Nature Methods, 3, 5 (2006)
  • F. Giessibl, Advances in Atomic Force Microscopy, Reviews of Modern Physics 75 (3), 949—983 (2003).
  • R. H. Eibl, V.T. Moy, Atomic force microscopy measurements of protein-ligand interactions on living cells. Methods Mol Biol. 305:439-50 (2005)
  • P. M. Hoffmann, A. Oral, R. A. Grimble, H. Ö. Özer, S. Jeffery, J. B. Pethica, Proc. Royal Soc. A 457, 1161 (2001).
  • Eibl RH, First measurement of physiologic VLA-4 activation by SDF-1 at the single-molecule level on a living cell. In: Advances in Single Molecule Research for Biology and Nanoscience. Hinterdorfer P, Schuetz G, Pohl P (Editors),Trauner, ISBN (2007).
  • West P, Introduction to Atomic Force Microscopy: Theory, Practice and Applications — www.AFMUniversity.org
  • Суслов А. А., Чижик С. А. Сканирующие зондовые микроскопы (обзор) // Материалы, Технологии, Инструменты — Т.2 (1997), № 3, С. 78-89

Ссылки[править | править код]