Propositional calculus

The propositional calculus[a] is a branch of logic.[1] It is also called propositional logic,[2] statement logic,[1] sentential calculus,[3] sentential logic,[1] or sometimes zeroth-order logic.[4][5] It deals with propositions[1] (which can be true or false)[6] and relations between propositions,[7] including the construction of arguments based on them.[8] Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of conjunction, disjunction, implication, equivalence, and negation.[9][10][11][12] Some sources include other connectives, as in the table below.

Unlike first-order logic, propositional logic does not deal with non-logical objects, predicates about them, or quantifiers. However, all the machinery of propositional logic is included in first-order logic and higher-order logics. In this sense, propositional logic is the foundation of first-order logic and higher-order logic.

Propositional logic is typically studied with a formal language, in which propositions are represented by letters, which are called propositional variables. These are then used, together with symbols for connectives, to make compound propositions. Because of this, the propositional variables are called atomic formulas of a formal zeroth-order language.[10][2] While the atomic propositions are typically represented by letters of the alphabet,[10] there is a variety of notations to represent the logical connectives. The following table shows the main notational variants for each of the connectives in propositional logic.

Notational variants of the connectives[13][14]
Connective Symbol
AND , , , ,
equivalent , ,
implies , ,
NAND , ,
nonequivalent , ,
NOR , ,
NOT , , ,
OR , , ,
XNOR XNOR
XOR ,

The most thoroughly researched branch of propositional logic is classical truth-functional propositional logic,[1] in which formulas are interpreted as having precisely one of two possible truth values, the truth value of true or the truth value of false.[15] The principle of bivalence and the law of excluded middle are upheld. By comparison with first-order logic, truth-functional propositional logic is considered to be zeroth-order logic.[4][5]

History[edit]

Although propositional logic (which is interchangeable with propositional calculus) had been hinted by earlier philosophers, it was developed into a formal logic (Stoic logic) by Chrysippus in the 3rd century BC[16] and expanded by his successor Stoics. The logic was focused on propositions. This was different from the traditional syllogistic logic, which focused on terms. However, most of the original writings were lost[17] and, at some time between the 3rd and 6th century CE, Stoic logic faded into oblivion, to be resurrected only in the 20th century, in the wake of the (re)-discovery of propositional logic.[18]

Symbolic logic, which would come to be important to refine propositional logic, was first developed by the 17th/18th-century mathematician Gottfried Leibniz, whose calculus ratiocinator was, however, unknown to the larger logical community. Consequently, many of the advances achieved by Leibniz were recreated by logicians like George Boole and Augustus De Morgan, completely independent of Leibniz.[19]

Gottlob Frege's predicate logic builds upon propositional logic, and has been described as combining "the distinctive features of syllogistic logic and propositional logic."[20] Consequently, predicate logic ushered in a new era in logic's history; however, advances in propositional logic were still made after Frege, including natural deduction, truth trees and truth tables. Natural deduction was invented by Gerhard Gentzen and Stanisław Jaśkowski. Truth trees were invented by Evert Willem Beth.[21] The invention of truth tables, however, is of uncertain attribution.

Within works by Frege[22] and Bertrand Russell,[23] are ideas influential to the invention of truth tables. The actual tabular structure (being formatted as a table), itself, is generally credited to either Ludwig Wittgenstein or Emil Post (or both, independently).[22] Besides Frege and Russell, others credited with having ideas preceding truth tables include Philo, Boole, Charles Sanders Peirce,[24] and Ernst Schröder. Others credited with the tabular structure include Jan Łukasiewicz, Alfred North Whitehead, William Stanley Jevons, John Venn, and Clarence Irving Lewis.[23] Ultimately, some have concluded, like John Shosky, that "It is far from clear that any one person should be given the title of 'inventor' of truth-tables.".[23]

Sentences[edit]

Propositional logic, as currently studied in universities, is a specification of a standard of logical consequence in which only the meanings of propositional connectives are considered in evaluating the conditions for the truth of a sentence, or whether a sentence logically follows from some other sentence or group of sentences.[2]

Declarative sentences[edit]

Propositional logic deals with statements, which are defined as declarative sentences having truth value.[25][1] Examples of statements might include:

Declarative sentences are contrasted with questions, such as "What is Wikipedia?", and imperative statements, such as "Please add citations to support the claims in this article.".[26][27] Such non-declarative sentences have no truth value,[28] and are only dealt with in nonclassical logics, called erotetic and imperative logics.

Compounding sentences with connectives[edit]

In propositional logic, a statement can contain one or more other statements as parts.[1] Compound sentences are formed from simpler sentences and express relationships among the constituent sentences.[29] This is done by combining them with logical connectives:[29][30] the main types of compound sentences are negations, conjunctions, disjunctions, implications, and biconditionals,[29] which are formed by using the corresponding connectives to connect propositions.[31][32] In English, these connectives are expressed by the words "and" (conjunction), "or" (disjunction), "not" (negation), "if" (material conditional), and "if and only if" (biconditional).[1][9] Examples of such compound sentences might include:

  • Wikipedia is a free online encyclopedia that anyone can edit, and millions already have. (conjunction)
  • It is not true that all Wikipedia editors speak at least three languages. (negation)
  • Either London is the capital of England, or London is the capital of the United Kingdom, or both. (disjunction)[b]

If sentences lack any logical connectives, they are called simple sentences,[1] or atomic sentences;[30] if they contain one or more logical connectives, they are called compound sentences,[29] or molecular sentences.[30]

Sentential connectives are a broader category that includes logical connectives.[2][30] Sentential connectives are any linguistic particles that bind sentences to create a new compound sentence,[2][30] or that inflect a single sentence to create a new sentence.[2] A logical connective, or propositional connective, is a kind of sentential connective with the characteristic feature that, when the original sentences it operates on are (or express) propositions, the new sentence that results from its application also is (or expresses) a proposition.[2] Philosophers disagree about what exactly a proposition is,[6][2] as well as about which sentential connectives in natural languages should be counted as logical connectives.[30][2] Sentential connectives are also called sentence-functors,[33] and logical connectives are also called truth-functors.[33]

Arguments[edit]

An argument is defined as a pair of things, namely a set of sentences, called the premises,[c] and a sentence, called the conclusion.[34][30][33] The conclusion is claimed to follow from the premises,[33] and the premises are claimed to support the conclusion.[30]

Example argument[edit]

The following is an example of an argument within the scope of propositional logic:

Premise 1: If it's raining, then it's cloudy.
Premise 2: It's raining.
Conclusion: It's cloudy.

The logical form of this argument is known as modus ponens,[35] which is a classically valid form.[36] So, in classical logic, the argument is valid, although it may or may not be sound, depending on the meteorological facts in a given context. This example argument will be reused when explaining § Formalization.

Validity and soundness[edit]

An argument is valid if, and only if, it is necessary that, if all its premises are true, its conclusion is true.[34][37][38] Alternatively, an argument is valid if, and only if, it is impossible for all the premises to be true while the conclusion is false.[38][34]

Validity is contrasted with soundness.[38] An argument is sound if, and only if, it is valid and all its premises are true.[34][38] Otherwise, it is unsound.[38]

Logic, in general, aims to precisely specify valid arguments.[30] This is done by defining a valid argument as one in which its conclusion is a logical consequence of its premises,[30] which, when this is understood as semantic consequence, means that there is no case in which the premises are true but the conclusion is not true[30] – see § Semantics below.

Formalization[edit]

Propositional logic is typically studied through a formal system in which formulas of a formal language are interpreted to represent propositions. This formal language is the basis for proof systems, which allow a conclusion to be derived from premises if, and only if, it is a logical consequence of them. This section will show how this works by formalizing the § Example argument. The formal language for a propositional calculus will be fully specified in § Language, and an overview of proof systems will be given in § Proof systems.

Propositional variables[edit]

Since propositional logic is not concerned with the structure of propositions beyond the point where they cannot be decomposed any more by logical connectives,[35][1] it is typically studied by replacing such atomic (indivisible) statements with letters of the alphabet, which are interpreted as variables representing statements (propositional variables).[1] With propositional variables, the § Example argument would then be symbolized as follows:

Premise 1:
Premise 2:
Conclusion:

When P is interpreted as "It's raining" and Q as "it's cloudy" these symbolic expressions correspond exactly with the original expression in natural language. Not only that, but they will also correspond with any other inference with the same logical form.

When a formal system is used to represent formal logic, only statement letters (usually capital roman letters such as , and ) are represented directly. The natural language propositions that arise when they're interpreted are outside the scope of the system, and the relation between the formal system and its interpretation is likewise outside the formal system itself.

Gentzen notation[edit]

If we assume that the validity of modus ponens has been accepted as an axiom, then the same § Example argument can also be depicted like this:

This method of displaying it is Gentzen's notation for natural deduction and sequent calculus.[39] The premises are shown above a line, called the inference line,[11] separated by a comma, which indicates combination of premises.[40] The conclusion is written below the inference line.[11] The inference line represents syntactic consequence,[11] sometimes called deductive consequence,[41] which is also symbolized with ⊢.[42][41] So the above can also be written in one line as .[d]

Syntactic consequence is contrasted with semantic consequence,[43] which is symbolized with ⊧.[42][41] In this case, the conclusion follows syntactically because the natural deduction inference rule of modus ponens has been assumed. For more on inference rules, see the sections on proof systems below.

Language[edit]

The language (commonly called )[44][45][30] of a propositional calculus is defined in terms of:[2][10]

  1. a set of primitive symbols, called atomic formulas, atomic sentences,[35][30] atoms,[46] placeholders, prime formulas,[46] proposition letters, sentence letters,[35] or variables, and
  2. a set of operator symbols, called connectives,[14][1][47] logical connectives,[1] logical operators,[1] truth-functional connectives,[1] truth-functors,[33] or propositional connectives.[2]

A well-formed formula is any atomic formula, or any formula that can be built up from atomic formulas by means of operator symbols according to the rules of the grammar. The language , then, is defined either as being identical to its set of well-formed formulas,[45] or as containing that set (together with, for instance, its set of connectives and variables).[10][30]

Usually the syntax of is defined recursively by just a few definitions, as seen next; some authors explicitly include parentheses as punctuation marks when defining their language's syntax,[30][48] while others use them without comment.[2][10]

Syntax[edit]

Given a set of atomic propositional variables , , , ..., and a set of propositional connectives , , , ..., , , , ..., , , , ..., a formula of propositional logic is defined recursively by these definitions:[2][10][47][e]

Definition 1: Atomic propositional variables are formulas.
Definition 2: If is a propositional connective, and A, B, C, … is a sequence of m, possibly but not necessarily atomic, possibly but not necessarily distinct, formulas, then the result of applying to to A, B, C, … is a formula.
Definition 3: Nothing else is a formula.

Writing the result of applying to A, B, C, … in functional notation, as (A, B, C, …), we have the following as examples of well-formed formulas:

What was given as Definition 2 above, which is responsible for the composition of formulas, is referred to by Colin Howson as the principle of composition.[35][f] It is this recursion in the definition of a language's syntax which justifies the use of the word "atomic" to refer to propositional variables, since all formulas in the language are built up from the atoms as ultimate building blocks.[2] Composite formulas (all formulas besides atoms) are called molecules,[46] or molecular sentences.[30] (This is an imperfect analogy with chemistry, since a chemical molecule may sometimes have only one atom, as in monatomic gases.)[46]

The definition that "nothing else is a formula", given above as Definition 3, excludes any formula from the language which is not specifically required by the other definitions in the syntax.[33] In particular, it excludes infinitely long formulas from being well-formed.[33]

Constants and schemata[edit]

Mathematicians sometimes distinguish between propositional constants, propositional variables, and schemata. Propositional constants represent some particular proposition,[50] while propositional variables range over the set of all atomic propositions.[50] Schemata, or schematic letters, however, range over all formulas.[33][1] (Schematic letters are also called metavariables.)[34] It is common to represent propositional constants by A, B, and C, propositional variables by P, Q, and R, and schematic letters are often Greek letters, most often φ, ψ, and χ.[33][1]

However, some authors recognize only two "propositional constants" in their formal system: the special symbol , called "truth", which always evaluates to True, and the special symbol , called "falsity", which always evaluates to False.[51][52][53] Other authors also include these symbols, with the same meaning, but consider them to be "zero-place truth-functors",[33] or equivalently, "nullary connectives".[47]

Semantics[edit]

To serve as a model of the logic of a given natural language, a formal language must be semantically interpreted.[30] In classical logic, all propositions evaluate to exactly one of two truth-values: True or False.[1][54] For example, "Wikipedia is a free online encyclopedia that anyone can edit" evaluates to True,[55] while "Wikipedia is a paper encyclopedia" evaluates to False.[56]

In other respects, the following formal semantics can apply to the language of any propositional logic, but the assumptions that there are only two semantic values (bivalence), that only one of the two is assigned to each formula in the language (noncontradiction), and that every formula gets assigned a value (excluded middle), are distinctive features of classical logic.[54][57][33] To learn about nonclassical logics with more than two truth-values, and their unique semantics, one may consult the articles on "Many-valued logic", "Three-valued logic", "Finite-valued logic", and "Infinite-valued logic".

Interpretation (case) and argument[edit]

For a given language , an interpretation,[58] or case,[30][g] is an assignment of semantic values to each formula of .[30] For a formal language of classical logic, a case is defined as an assignment, to each formula of , of one or the other, but not both, of the truth values, namely truth (T, or 1) and falsity (F, or 0).[59][60] An interpretation of a formal language for classical logic is often expressed in terms of truth tables.[61][1] Since each formula is only assigned a single truth-value, an interpretation may be viewed as a function, whose domain is , and whose range is its set of semantic values ,[2] or .[30]

For distinct propositional symbols there are distinct possible interpretations. For any particular symbol , for example, there are possible interpretations: either is assigned T, or is assigned F. And for the pair , there are possible interpretations: either both are assigned T, or both are assigned F, or is assigned T and is assigned F, or is assigned F and is assigned T.[61] Since has , that is, denumerably many propositional symbols, there are , and therefore uncountably many distinct possible interpretations of as a whole.[61]

Where is an interpretation and and represent formulas, the definition of an argument, given in § Arguments, may then be stated as a pair , where is the set of premises and is the conclusion. The definition of an argument's validity, i.e. its property that , can then be stated as its absence of a counterexample, where a counterexample is defined as a case in which the argument's premises are all true but the conclusion is not true.[30][35] As will be seen in § Semantic truth, validity, consequence, this is the same as to say that the conclusion is a semantic consequence of the premises.

Propositional connective semantics[edit]

An interpretation assigns semantic values to atomic formulas directly.[58][30] Molecular formulas are assigned a function of the value of their constituent atoms, according to the connective used;[58][30] the connectives are defined in such a way that the truth-value of a sentence formed from atoms with connectives depends on the truth-values of the atoms that they're applied to, and only on those.[58][30] This assumption is referred to by Colin Howson as the assumption of the truth-functionality of the connectives.[35]

Since logical connectives are defined semantically only in terms of the truth values that they take when the propositional variables that they're applied to take either of the two possible truth values,[1][30] the semantic definition of the connectives is usually represented as a truth table for each of the connectives,[1][30] as seen below:

p q pq pq pq pq ¬p ¬q
T T T T T T F F
T F F T F F F T
F T F T T F T F
F F F F T T T T

This table covers each of the main five logical connectives:[9][10][11][12] conjunction (here notated p ∧ q), disjunction (p ∨ q), implication (p → q), equivalence (p ⇔ q) and negation, (¬p, or ¬q, as the case may be). It is sufficient for determining the semantics of each of these operators.[1][62][30] For more detail on each of the five, see the articles on each specific one, as well as the articles "Logical connective" and "Truth function". For more truth tables for more different kinds of connectives, see the article "Truth table".

Some of these connectives may be defined in terms of others: for instance, implication, p → q, may be defined in terms of disjunction and negation, as ¬p ∨ q;[63] and disjunction may be defined in terms of negation and conjunction, as ¬(¬p ∧ ¬q).[48] In fact, a truth-functionally complete system,[h] in the sense that all and only the classical propositional tautologies are theorems, may be derived using only disjunction and negation (as Russell, Whitehead, and Hilbert did),[2] or using only implication and negation (as Frege did),[2] or using only conjunction and negation,[2] or even using only a single connective for "not and" (the Sheffer stroke),[3][2] as Jean Nicod did.[2] A joint denial connective (logical NOR) will also suffice, by itself, to define all other connectives,[48] but no other connectives have this property.[48]

Semantic truth, validity, consequence[edit]

Given and as formulas (or sentences) of a language , and as an interpretation (or case)[i] of , then the following definitions apply:[61][60]

  • Truth-in-a-case:[30] A sentence of is true under an interpretation if assigns the truth value T to .[60][61] If is true under , then is called a model of .[61]
  • Falsity-in-a-case:[30] is false under an interpretation if, and only if, is true under .[61][65][30] This is the "truth of negation" definition of falsity-in-a-case.[30] Falsity-in-a-case may also be defined by the "complement" definition: is false under an interpretation if, and only if, is not true under .[60][61] In classical logic, these definitions are equivalent, but in nonclassical logics, they are not.[30]
  • Semantic consequence: A sentence of is a semantic consequence () of a sentence if there is no interpretation under which is true and is not true.[60][61][30]
  • Valid formula (tautology): A sentence of is logically valid (),[j] or a tautology,[66][67][48] if it is true under every interpretation,[60][61] or true in every case.[30]
  • Consistent sentence: A sentence of is consistent if it is true under at least one interpretation. It is inconsistent if it is not consistent.[60][61] An inconsistent formula is also called self-contradictory,[1] and said to be a self-contradiction,[1] or simply a contradiction,[68][69][70] although this latter name is sometimes reserved specifically for statements of the form .[1]

For interpretations (cases) of , these definitions are sometimes given:

  • Complete case: A case is complete if, and only if, either is true-in- or is true-in-, for any in .[30][71]
  • Consistent case: A case is consistent if, and only if, there is no in such that both and are true-in-.[30][72]

For classical logic, which assumes that all cases are complete and consistent,[30] the following theorems apply:

  • For any given interpretation, a given formula is either true or false under it.[61][65]
  • No formula is both true and false under the same interpretation.[61][65]
  • is true under if, and only if, is false under ;[61][65] is true under if, and only if, is not true under .[61]
  • If and are both true under , then is true under .[61][65]
  • If and , then .[61]
  • is true under if, and only if, either is not true under , or is true under .[61]
  • if, and only if, is logically valid, that is, if, and only if, .[61][65]

Proof systems[edit]

Proof systems in propositional logic can be broadly classified into semantic proof systems and syntactic proof systems,[73][74][75] according to the kind of logical consequence that they rely on: semantic proof systems rely on semantic consequence (),[76] whereas syntactic proof systems rely on syntactic consequence ().[77] Semantic consequence deals with the truth values of propositions in all possible interpretations, whereas syntactic consequence concerns the derivation of conclusions from premises based on rules and axioms within a formal system.[78] This section gives a very brief overview of the kinds of proof systems, with anchors to the relevant sections of this article on each one, as well as to the separate Wikipedia articles on each one.

Semantic proof systems[edit]

Example of a truth table
A graphical representation of a partially built propositional tableau

Semantic proof systems rely on the concept of semantic consequence, symbolized as , which indicates that if is true, then must also be true in every possible interpretation.[78]

Truth tables[edit]

A truth table is a semantic proof method used to determine the truth value of a propositional logic expression in every possible scenario.[79] By exhaustively listing the truth values of its constituent atoms, a truth table can show whether a proposition is true, false, tautological, or contradictory.[80] See § Semantic proof via truth tables.

Semantic tableaux[edit]

A semantic tableau is another semantic proof technique that systematically explores the truth of a proposition.[81] It constructs a tree where each branch represents a possible interpretation of the propositions involved.[82] If every branch leads to a contradiction, the original proposition is considered to be a contradiction, and its negation is considered a tautology.[35] See § Semantic proof via tableaux.

Syntactic proof systems[edit]

Rules for the propositional sequent calculus LK, in Gentzen notation

Syntactic proof systems, in contrast, focus on the formal manipulation of symbols according to specific rules. The notion of syntactic consequence, , signifies that can be derived from using the rules of the formal system.[78]

Axiomatic systems[edit]

An axiomatic system is a set of axioms or assumptions from which other statements (theorems) are logically derived.[83] In propositional logic, axiomatic systems define a base set of propositions considered to be self-evidently true, and theorems are proved by applying deduction rules to these axioms.[84] See the § Jan Łukasiewicz axiomatic proof system example.

Natural deduction[edit]

Natural deduction is a syntactic method of proof that emphasizes the derivation of conclusions from premises through the use of intuitive rules reflecting ordinary reasoning.[85] Each rule reflects a particular logical connective and shows how it can be introduced or eliminated.[85] See § Syntactic proof via natural deduction.

Sequent calculus[edit]

The sequent calculus is a formal system that represents logical deductions as sequences or "sequents" of formulas.[86] Developed by Gerhard Gentzen, this approach focuses on the structural properties of logical deductions and provides a powerful framework for proving statements within propositional logic.[86][87]

Semantic proof via truth tables[edit]

Taking advantage of the semantic concept of validity (truth in every interpretation), it is possible to prove a formula's validity by using a truth table, which gives every possible interpretation (assignment of truth values to variables) of a formula.[80][46][33] If, and only if, all the lines of a truth table come out true, the formula is semantically valid (true in every interpretation).[80][46] Further, if (and only if) is valid, then is inconsistent.[68][69][70]

For instance, this table shows that "p → (q ∨ r → (r → ¬p))" is not valid:[46]

p q r qr r → ¬p qr → (r → ¬p) p → (qr → (r → ¬p))
T T T T F F F
T T F T T T T
T F T T F F F
T F F F T T T
F T T T T T T
F T F T T T T
F F T T T T T
F F F F T T T

The computation of the last column of the third line may be displayed as follows:[46]

p (q r (r ¬ p))
T (F T (T ¬ T))
T ( T (T F ))
T ( T F )
T F
F
T F F T T F T F F T

Further, using the theorem that if, and only if, is valid,[61][65] we can use a truth table to prove that a formula is a semantic consequence of a set of formulas: if, and only if, we can produce a truth table that comes out all true for the formula (that is, if ).[88][89]

Semantic proof via tableaux[edit]

Since truth tables have 2n lines for n variables, they can be tiresomely long for large values of n.[35] Analytic tableaux are a more efficient, but nevertheless mechanical,[90] semantic proof method; they take advantage of the fact that "we learn nothing about the validity of the inference from examining the truth-value distributions which make either the premises false or the conclusion true: the only relevant distributions when considering deductive validity are clearly just those which make the premises true or the conclusion false."[35]

Analytic tableaux for propositional logic are fully specified by the rules that are stated in schematic form below.[48] These rules use "signed formulas", where a signed formula is an expression or , where is a (unsigned) formula of the language .[48] (Informally, is read " is true", and is read " is false".)[48] Their formal semantic definition is that "under any interpretation, a signed formula is called true if is true, and false if is false, whereas a signed formula is called false if is true, and true if is false."[48]

In this notation, rule 2 means that yields both , whereas branches into . The notation is to be understood analogously for rules 3 and 4.[48] Often, in tableaux for classical logic, the signed formula notation is simplified so that is written simply as , and as , which accounts for naming rule 1 the "Rule of Double Negation".[35][90]

One constructs a tableau for a set of formulas by applying the rules to produce more lines and tree branches until every line has been used, producing a complete tableau. In some cases, a branch can come to contain both and for some , which is to say, a contradiction. In that case, the branch is said to close.[35] If every branch in a tree closes, the tree itself is said to close.[35] In virtue of the rules for construction of tableaux, a closed tree is a proof that the original formula, or set of formulas, used to construct it was itself self-contradictory, and therefore false.[35] Conversely, a tableau can also prove that a logical formula is tautologous: if a formula is tautologous, its negation is a contradiction, so a tableau built from its negation will close.[35]

To construct a tableau for an argument , one first writes out the set of premise formulas, , with one formula on each line, signed with (that is, for each in the set);[90] and together with those formulas (the order is unimportant), one also writes out the conclusion, , signed with (that is, ).[90] One then produces a truth tree (analytic tableau) by using all those lines according to the rules.[90] A closed tree will be proof that the argument was valid, in virtue of the fact that if, and only if, is inconsistent (also written as ).[90]

List of classically valid argument forms[edit]

Using semantic checking methods, such as truth tables or semantic tableaux, to check for tautologies and semantic consequences, it can be shown that, in classical logic, the following classical argument forms are semantically valid, i.e., these tautologies and semantic consequences hold.[33] We use to denote equivalence of and , that is, as an abbreviation for both and ;[33] as an aid to reading the symbols, a description of each formula is given. The description reads the symbol ⊧ (called the "double turnstile") as "therefore", which is a common reading of it,[33][91] although many authors prefer to read it as "entails",[33][92] or as "models".[93]

Name Sequent Description
Modus Ponens [30] If p then q; p; therefore q
Modus Tollens [30] If p then q; not q; therefore not p
Hypothetical Syllogism If p then q; if q then r; therefore, if p then r
Disjunctive Syllogism [94] Either p or q, or both; not p; therefore, q
Constructive Dilemma If p then q; and if r then s; but p or r; therefore q or s
Destructive Dilemma If p then q; and if r then s; but not q or not s; therefore not p or not r
Bidirectional Dilemma If p then q; and if r then s; but p or not s; therefore q or not r
Simplification [30] p and q are true; therefore p is true
Conjunction [30] p and q are true separately; therefore they are true conjointly
Addition [30][94] p is true; therefore the disjunction (p or q) is true
Composition If p then q; and if p then r; therefore if p is true then q and r are true
De Morgan's Theorem (1) [30] The negation of (p and q) is equiv. to (not p or not q)
De Morgan's Theorem (2) [30] The negation of (p or q) is equiv. to (not p and not q)
Commutation (1) [94] (p or q) is equiv. to (q or p)
Commutation (2) [94] (p and q) is equiv. to (q and p)
Commutation (3) [94] (p iff q) is equiv. to (q iff p)
Association (1) [35] p or (q or r) is equiv. to (p or q) or r
Association (2) [35] p and (q and r) is equiv. to (p and q) and r
Distribution (1) [94] p and (q or r) is equiv. to (p and q) or (p and r)
Distribution (2) [94] p or (q and r) is equiv. to (p or q) and (p or r)
Double Negation [30][94] p is equivalent to the negation of not p
Transposition [30] If p then q is equiv. to if not q then not p
Material Implication [94] If p then q is equiv. to not p or q
Material Equivalence (1) [94] (p iff q) is equiv. to (if p is true then q is true) and (if q is true then p is true)
Material Equivalence (2) [94] (p iff q) is equiv. to either (p and q are true) or (both p and q are false)
Material Equivalence (3) (p iff q) is equiv to., both (p or not q is true) and (not p or q is true)
Exportation [95] from (if p and q are true then r is true) we can prove (if q is true then r is true, if p is true)
Importation If p then (if q then r) is equivalent to if p and q then r
Tautology (1) [94] p is true is equiv. to p is true or p is true
Tautology (2) [94] p is true is equiv. to p is true and p is true
Tertium non datur (Law of Excluded Middle) [30][94] p or not p is true
Law of Non-Contradiction [30][94] p and not p is false, is a true statement
Explosion [30] p and not p; therefore q

Syntactic proof via natural deduction[edit]

Natural deduction, since it is a method of syntactical proof, is specified by providing inference rules for the typical set of connectives ; no axioms are used other than these rules.[96]

Natural deduction inference rules, due ultimately to Gentzen, are given below.[96] In accordance with convention,[11][41] the symbol (the turnstile, or single turnstile by contrast with the double turnstile ) shall be used for syntactic consequence (also known as deductive consequence);[11][41] it may be read as "infer that". Where is a (possibly empty) set of formulas called premises, and is a formula called conclusion, the sentence means that if every premise (sentence in ) is a theorem (or has the same truth value as the axioms), then the conclusion (the sentence ) is also a theorem. When is an empty set, as when deriving tautologies, then may be omitted, and we may write directly . For simplicity, curly braces may be omitted from a set of comma-separated sentences;[33] the turnstile and comma are metalogical symbols that have a higher level than the connectives, so no parentheses are needed to interpret a formula such as .[33]

Inference rules[edit]

  • Rule of Assumptions (A): At any stage of the argument, introduce a proposition as an assumption of the argument.[96]
  • Negation introduction (−I): From and , infer ; that is, .
  • Negation elimination (−E): From , infer ; that is, .
  • Double negation (DN): From , infer ; that is, .[96]
  • Conjunction introduction (&I): From and , infer ; that is, .[96]
  • Conjunction elimination (&E): From , infer , and from , infer ; that is, and .[96]
  • Disjunction introduction (∨I): From , infer . From , infer ; that is, and .[96]
  • Disjunction elimination (∨E): From and and , infer ; that is, .[96]
  • Biconditional introduction (Df ↔): From and , infer ; that is, .[96]
  • Biconditional elimination (Df ↔): From , infer , and from , infer ; that is, and .[96]
  • Modus ponendo ponens (MPP), or conditional elimination: From and , infer ; that is, .[96]
  • Conditional proof (CP), or conditional introduction: From [accepting allows a proof of ], infer ; that is, .[96]
  • Modus tollendo tollens (MTT): From and , infer ; that is, .[96]
  • Reductio ad absurdum (RAA): If a contradiction can be derived from an assumption, derive the negation of the assumption.[96] "Contradiction' here does not have its semantic sense, but means merely the conjunction of a formula with its negation, i.e., a formula that has the schematic form .[96]

Example of a proof[edit]

  • To be shown that .
  • One possible proof of this (which, though valid, happens to contain more steps than are necessary) may be arranged as follows:
Example of a proof
Number Formula Reason
1 premise
2 From (1) by disjunction introduction
3 From (1) and (2) by conjunction introduction
4 From (3) by conjunction elimination
5