Comparison of orbital launch systems

Falcon 9 Block 5, the most prolific active orbital launch system in the world.

This comparison of orbital launch systems lists the attributes of all current and future individual rocket configurations designed to reach orbit. A first list contains rockets that are operational or have attempted an orbital flight attempt as of 2024; a second list includes all upcoming rockets. For the simple list of all conventional launcher families, see: Comparison of orbital launchers families. For the list of predominantly solid-fueled orbital launch systems, see: Comparison of solid-fueled orbital launch systems.

Spacecraft propulsion[note 1] is any method used to accelerate spacecraft and artificial satellites. Orbital launch systems are rockets and other systems capable of placing payloads into or beyond Earth orbit. All launch vehicle propulsion systems employed to date have been chemical rockets falling into one of three main categories:

  • Solid-propellant rockets or solid-fuel rockets have a motor that uses solid propellants, typically a mix of powdered fuel and oxidizer held together by a polymer binder and molded into the shape of a hollow cylinder. The cylinder is ignited from the inside and burns radially outward, with the resulting expanding gases and aerosols escaping out via the nozzle.[note 2]
  • Liquid-propellant rockets have a motor that feeds liquid propellant(s) into a combustion chamber. Most liquid engines use a bipropellant, consisting of two liquid propellants (fuel and oxidizer) which are stored and handled separately before being mixed and burned inside the combustion chamber.
  • Hybrid-propellant rockets use a combination of solid and liquid propellant, typically involving a liquid oxidizer being pumped through a hollow cylinder of solid fuel.

All current spacecraft use conventional chemical rockets (solid-fuel or liquid bipropellant) for launch, though some[note 3] have used air-breathing engines on their first stage.[note 4]

Current rockets

[edit]

Orbits legend:

Vehicle Origin Manufacturer Height Maximum payload mass
(kg)
Reusable / Expendable Orbital
launches
including
failures[a]
Launch site(s) Dates of flight
LEO GTO Other First Latest
Angara A5 / Briz-M  Russia Khrunichev 48.7 m 24,500[1] 5,400[1] 3,000 to GEO[1] Expendable 2[1] 2014 2020
Angara-1.2  Russia Khrunichev 42.7 m 3,700[2] N/A 2,400 to SSO[3]
3400 to polar[2]
Expendable 2[2] 2022 2022
Ariane 6 A62  Europe ArianeGroup 63 m 10,350[4]: 45  4,500[5]: 33  7,200 to SSO
7,000 to polar
3,300 to HEO
3,500 to TLI[5]: 35–37 
Expendable 1[6] 2024 2024
Atlas V 551  United States ULA 58.3 m 18,850[7] 8,900[7] 13,550 to SSO[8]
3,850 to GEO[7]
Expendable 14[8] 2006 2024
Atlas V N22[b]  United States ULA 52.4 m 13,000[10] N/A N/A Expendable 3[10] 2019[11] 2024
Ceres-1 (3)[c]  China Galactic Energy 20 m 400[13] N/A 300 to SSO[13] Expendable 10[12] 2022 2024
Ceres-1S[d]  China Galactic Energy 20 m 400[13] N/A 300 to SSO[13] Expendable 3[12] 2023 2024
Chollima-1  North Korea NADA > 38 m > 300[14] N/A N/A Expendable 3[15] 2023 2023
Electron  United States
 New Zealand
Rocket Lab 18 m 300[16] N/A 200 to SSO[17] Partially reusable 51[18] 2017 2024
Epsilon (2)  Japan IHI[19] 24.4 m 1,500[20] N/A N/A Expendable 1[20] 2016 2016
Epsilon (2) / CLPS  Japan IHI[19] 24.4 m N/A N/A 590 to SSO[20] Expendable 4[20] 2018 2022
Falcon 9 Block 5  United States SpaceX 70 m 13,000 1,800 1,000 to BLT Partially reusable (launch site) 320[21] 2018 2024
17,500[22] 5,500[21] 4,500 to MEO Partially reusable (drone ship)
22,000[21] 8,300[21] 4,020 to TMI[21] Expendable
Falcon Heavy[23]  United States SpaceX 70 m 30,000[24] 8,000[25] N/A Partially reusable 10[26] 2018 2024
63,800[26] 26,700[26] 16,800 to TMI[26] Expendable
Firefly Alpha  United States Firefly Aerospace 29 m 1,030[27] N/A 630 to SSO[27] Expendable 5[28] 2021 2024
Gravity-1  China Orienspace 31.4 m 6,500[29] N/A 4,200 to SSO[29] Expendable 1[29] 2024 2024
GSLV Mk II  India ISRO 49.1 m 6,000[30] 2,250[30] N/A Expendable 10[31] 2010 2024
H-IIA 202  Japan Mitsubishi 53 m 10,000[32] 4,000[32] 5,100 to SSO[e] Expendable 33[34] 2001 2024
H3-22S  Japan Mitsubishi 57 m N/A[35] 3,500 N/A Expendable 3[36] 2023 2024
Hyperbola-1 (2)[f]  China i-Space 22.5 m 500[38] N/A 300 to SSO[39] Expendable 6[39] 2021 2024
Jielong 1  China CALT 19.5 m N/A N/A 200 to SSO[40] Expendable 1[41] 2019 2019
Jielong 3  China CALT 31.8 m N/A N/A 1,500 (500 km SSO)[42] Expendable 3[42] 2022 2024
Kinetica 1  China CAS Space 30 m 2,000[43] N/A 1,500 (500 km SSO)[43] Expendable 3[43] 2022 2024
Kuaizhou 1A  China ExPace 19.8 m 400[44] N/A 250 to SSO Expendable 26[44] 2013[g] 2024
Kuaizhou 11  China ExPace 25.3 m 1,500[45] N/A 1,000 to SSO[45] Expendable 3[46] 2020 2024
Long March 2C  China CALT 38.8 m 3,850[47] 1,250[47] 1,900 to SSO[47] Expendable 70 1982 2024
Long March 2C / YZ-1S  China CALT 38.8 m N/A N/A 2,000 to SSO[48] Expendable 8[48] 2018 2024
Long March 2D  China SAST 41.1 m 4,000[49] N/A 1,300 to SSO[50] Expendable 87[51][52] 1992 2024
Long March 2D / YZ-3  China SAST 41.1 m N/A N/A 2,000 to SSO Expendable 3[53] 2018 2024
Long March 2F  China CALT 62 m 8,400[54] N/A N/A Expendable 23[55][56][57] 1999 2024
Long March 3A  China CALT 52.5 m 6,000[58] 2,600[58] 5,000 to SSO
1,420 to TLI[58]
Expendable 27[58] 1994 2018
Long March 3B/E  China CALT 56.3 m 11,500[59] 5,500[59] 6,900 to SSO
3,500 to TLI[59]
Expendable 83[59] 2007 2024
Long March 3B/E / YZ-1  China CALT 56.3 m N/A N/A 2,200 to MEO Expendable 14[60] 2015 2023
Long March 3C  China CALT 54.8 m 9,100[61] 3,800[61] 6,500 to SSO
2,300 to TLI[59]
Expendable 18[62][61] 2008 2021
Long March 3C / YZ-1  China CALT 54.8 m N/A N/A N/A Expendable 2[63] 2015 2016
Long March 4B  China SAST 44.1 m 4,200[64] 1,500[64] 2,800 to SSO[64] Expendable 51[64] 1999 2024
Long March 4C  China SAST 45.8 m 4,200[65] 1,500[65] 2,800 to SSO[65] Expendable 54[65] 2006 2024
Long March 5  China CALT 56.9 m ~ 25,000[66] ~ 14,000[66] 15,000 to SSO
4,500 to GEO
8,200 to TLI
6,000 to TMI[67][68]
Expendable 7[67] 2017 2024
Long March 5 / YZ-2  China CALT 56.9 m N/A N/A 4,500 to GEO[69] Expendable 1[69] 2016 2016
Long March 5B  China CALT 56.9 m 23,000[70] N/A N/A Expendable 4[70] 2020 2022
Long March 6  China SAST 29 m 1,500[71] N/A 1,080 to SSO[71] Expendable 12[71] 2015 2024
Long March 6A  China SAST 50 m 8,000[72] N/A 4,500 to SSO[73] Expendable 7[73] 2022 2024
Long March 6C  China CALT 43 m 4,500 N/A 2,400 to SSO[74] Expendable 1[75] 2024 2024
Long March 7  China CALT 53.1 m 13,500[76] N/A 5,500 to SSO[77] Expendable 7[78] 2017 2024
Long March 7 / YZ-1A  China CALT 53.1 m N/A N/A 9,500 to SSO Expendable 1[79] 2016 2016
Long March 7A  China CALT 60.13 m N/A 7,000[77] 5,000 to TLI Expendable 8[80] 2020 2024
Long March 8 822[81]  China CALT 50.34 m 7,600[82] 2,500[82] 4,500 to SSO[82]
1,500 to TLI
Expendable 2[82] 2020 2024
Long March 8 820[81]  China CALT 48 m 4,500 N/A 3,000 to SSO Expendable 1[83] 2022 2022
Long March 11  China CALT 20.8 m 700[84] N/A 350 to SSO[84] Expendable 12[84] 2015 2023
Long March 11H  China CALT 20.8 m 700[84] N/A 350 to SSO[84] Expendable 5[84] 2019 2023
LVM 3  India ISRO 43.4 m 8,000[85] 4,000[85] 3,000 to TLI Expendable 6[86] 2017[h] 2023
Minotaur-C-XL-3210  United States Northrop Grumman 27.9 m 1,275[88] N/A 880 to SSO[88] Expendable 2[88] 2004 2017
Minotaur I  United States Northrop Grumman 19.2 m 580[89] N/A ~ 430 to SSO[89]
400 to Polar[90]
Expendable 12[i][90] 2000 2021
Minotaur IV  United States Northrop Grumman 23.9 m 1,735[91] N/A 1,170 to Polar[91] Expendable 2[91][j] 2010 2020
Minotaur IV / HAPS  United States Northrop Grumman 23.9 m N/A N/A N/A Expendable 1[93] 2010 2010
Minotaur IV / Orion 38  United States Northrop Grumman 23.9 m N/A N/A N/A Expendable 1[94] 2017 2017
Minotaur

IV+

 United States Northrop Grumman 23.9 m 1,950[95] N/A 1,430 to Polar[95] Expendable 1[95] 2011 2011
Minotaur V  United States Northrop Grumman 24.6 m N/A 678[96] 465 to HCO[96] Expendable 1[96] 2013 2013
Nuri (KSLV-II)  South Korea KARI 47.2 m 3,300[97] N/A 1,900 to SSO[97] Expendable 3[98] 2021 2023
Pegasus XL  United States Northrop Grumman 16.9 m 475[99] 125[99] ~ 325 to SSO[100]
365 to Polar[99]
Expendable 29[99] 1994 2021
Pegasus XL / HAPS  United States Northrop Grumman 16.9 m 500[101] N/A N/A Expendable 6[101] 1997 2005
Proton-M  Russia Khrunichev 57.2 m 23,700[102] N/A N/A Expendable 1[103] 2021 2021
Proton-M / Briz-M  Russia Khrunichev 58.2 m N/A 6,300[104] 3,300 to GEO[104] Expendable 101[104] 2001 2023
Proton-M / Blok DM-03  Russia Khrunichev 57.2 m N/A 6,000[102] 3,200 to GEO[105] Expendable 7[106] 2010 2023
PSLV-CA  India ISRO 44.4 m 2,100[107] N/A 1,100 to SSO[107] Expendable 17[108][107] 2007 2023
PSLV-DL  India ISRO 44.4 m N/A N/A 1,257 to SSO[109] Expendable 4[110] 2019 2024
PSLV-QL  India ISRO 44.4 m N/A N/A 1,523 to SSO[109] Expendable 2[111] 2019 2019
PSLV-XL  India ISRO 44.4 m 3,800[112] 1,300[112] 1,750 to SSO[112]
550 to TMI[113]
Expendable 25[112] 2008 2023
Qaem 100  Iran IRGC 15.5 m 80[114] N/A N/A Expendable 3[114][k] 2023 2024
Qased  Iran IRGC 18.8 m 40[115] N/A N/A Expendable 3[115] 2020 2023
Shavit-2  Israel IAI 22.1 m 380 in Retrograde[116] N/A N/A Expendable 6[117] 2007 2023
Simorgh  Iran Iranian Space Agency 26 m 350[118] N/A N/A Expendable 6[118][l] 2017 2024
Soyuz-2.1a  Russia TsSKB-Progress 51.4 m 7,020 from Baikonur
6,830 from Plesetsk
7,150 from Vostochny[119]
N/A N/A Expendable 48[120][m] 2013 2024
Soyuz-2.1a / Fregat  Russia TsSKB-Progress 46.9 m N/A N/A 4,450 to SSO[121] Expendable 21[121] 2006 2023
Soyuz-2.1a / Volga  Russia TsSKB-Progress 46.9 m N/A N/A N/A Expendable 1[122] 2016 2016
Soyuz-2.1b  Russia TsSKB-Progress 44.1 m 8,200 from Baikonur
7,850 from Plesetsk
8,320 from Vostochny[119]
N/A N/A Expendable 17[123] 2008 2024
Soyuz-2.1b / Fregat  Russia TsSKB-Progress 46.7 m 5,500[124] 3,060[124] 4,900 to SSO
1,200 to HCO[124]
Expendable 54[124] 2006 2024
Soyuz-2.1v  Russia TsSKB-Progress 44.1 m 2,800[125] N/A 2,630 to polar[125] Expendable 5[125] 2018 2024
Soyuz-2.1v / Volga  Russia TsSKB-Progress 44.1 m N/A N/A 1,400 to SSO[126] Expendable 7[126] 2013 2022
SLS Block 1  United States NASA Boeing
Northrop Grumman
98 m 95,000[127] N/A 27,000+ to TLI[127] Expendable 1[128] 2022 2022
SSLV  India ISRO 34 m 500[129] N/A 300 to SSO[130] Expendable 3[130] 2022 2024
Tianlong-2  China Space Pioneer 32.8 m 2,000[131] N/A 1,500 to SSO[131] Expendable 1[131] 2023 2023
Vega-C  EuropeItaly Italy ArianeGroupAvio 36.2 m 3,300[132] N/A 2,470 to SSO[133] 2,300 to polar[132] Expendable 2[134] 2022 2022
Zhuque-2 B1  China LandSpace 49.5 m 4,000 N/A 1,500 to SSO[135] Expendable 3[136] 2022 2023
  1. ^ Suborbital flight tests and on-pad explosions are excluded, but launches failing en route to orbit are included.
  2. ^ for Starliner[9]
  3. ^ Despite not being officially acknowledged by the manufacturer, significant changes between different iterations of the rocket lead to the identification of different variants.[12]
  4. ^ Sea-launched version of the third unofficial iteration of the Ceres-1 launch vehicle.
  5. ^ 5,100 kg to a 500-km Sun-synchronous orbit; 3,300 kg to 800 km[33]: 64–65 
  6. ^ Despite not being officially acknowledged by the manufacturer, significant changes between different iterations of the rocket lead to the identification of different variants.[37]
  7. ^ A suborbital test flight was conducted in March 2012.[44]
  8. ^ A suborbital test flight was conducted in 2014 (designated LVM-3/CARE) without the cryogenic upper stage (CUS).[87]
  9. ^ A suborbital mission was conducted in 2024.
  10. ^ Additionally, two suborbital missions were conducted in 2010 and 2011.[92]
  11. ^ A suborbital test flight succeeded in 2022.
  12. ^ A suborbital test flight succeeded in 2016.[118]
  13. ^ Suborbital test flight in 2004, without Fregat upper stage.[120]

Rockets in flight testing

[edit]
Vehicle Origin Manufacturer Height Maximum payload mass
(kg)
Reusable / Expendable Orbital
launches
including
failures[a]
Launch site(s) Dates of flight
LEO GTO Other First Latest
Starship Block 1[137]  United States SpaceX 121 m 40,000 - 50,000[138] N/A N/A Expendable 4[1] 2023 2024
Angara A5 / Orion  Russia Khrunichev 54.9 m N/A 6,500[1] 3,700 to GEO[1] Expendable 1[1] 2024 2024
Angara A5 / Persei  Russia Khrunichev 54.9 m N/A 6,500[1] 3,700 to GEO[1] Expendable 1[1] 2021 2021
GYUB TV2 South Korea South Korea MND 19.5 m 100[139] N/A N/A Expendable 1[139] 2023 2023
KAIROS  Japan Space One 18 m 250[140] N/A 150 to SSO[140] Expendable 1[141] 2024 2024
New-type satellite carrier rocket[142]  North Korea
 Russia
NADA

Khrunichev

N/A N/A N/A N/A Expendable 1[143][142] 2024 2024
Vulcan Centaur VC2  United States ULA 61.6 m 19,000[144] 8,400[144] 15,200 to polar 3,900 to MEO 2,600 to GEO 6,300 to TLI[144] Expendable 1[145] 2024 2024

Upcoming rockets

[edit]

Upcoming launch vehicles

Vehicle Origin Manufacturer Height Payload mass to ... (kg) Reusable / Expendable Launch Site (s) Date of first flight
LEO GTO Other
Agnibaan  India AgniKul Cosmos 18 m 150 N/A 90 to SSO Expendable 2025
Angara A5 / KVTK  Russia Khrunichev N/A N/A 7,500 N/A Expendable 2028
Angara A5M  Russia Khrunichev N/A 26,800 4,100-5,200 N/A Expendable 2027
Angara A5P  Russia Khrunichev N/A 18,800 N/A N/A Expendable 2028
Angara A5V  Russia Khrunichev N/A 37,500[146] N/A N/A Expendable 2028
Antares 330  United States Northrop Grumman

Firefly Aerospace[b]

47 m 10,800[147] N/A N/A Expendable 2025[148]
Ariane 6 A64  Europe ArianeGroup 63 m 21,650[4]: 46  11,500+ [4]: 33  14,900 to SSO
5,000 to GEO
8,400 to HEO
8,500 to TLI [4]: 40–49 
Expendable 2024[149]
Aurora Canada Canada Reaction Dynamics 18 m 200 N/A TBA Expendable 2025
Aventura 1 Argentina Argentina TLON Space 10 m 25 N/A N/A N/A
  • Uruguay Launch platform
2025
Blue Whale 1  South Korea Perigee Aerospace 21 m 165[150] N/A 185 to SSO Partially reusable 2024[152]
195[150] 220 to SSO Expendable
Cosmos  Russia SR space 18.5 m 390 N/A 310 to SSO N/A TBA
Cyclone-4M  Ukraine Yuzhnoye
Yuzhmash
38.7 m 5,000[153] 1,000[154] 3,350 to SSO[153] Expendable 2025[155]
Dauntless  United States Vaya Space 35 m 1,100[156] N/A 600 to SSO Expendable
  • United States CCSFS,
  • United States The Spaceport Company Launch Platform
2026[156]
Daytona I  United States Phantom Space 18 m 180 N/A 53 to SSO Expendable 2025[157]
Epsilon S Japan Japan JAXA 27.2 m 1,400 N/A 600 to SSO Expendable 2025[158]
Eris Block 1  Australia Gilmour Space Technologies 25 m 305[159] N/A N/A Expendable 2024[160]
Gravity-2  China Orienspace 60 m 8,600 - 16,000 5,800 10,900 to SSO Partially reusable 2025[161]
Hanbit-Nano South Korea South Korea Innospace 17 m[162] 150 N/A 90 Expendable 2025[163]
Hyperbola-3  China i-Space 69 m 8,500 N/A N/A Partially reusable 2025[164]
13,400 Expendable
H3-22L  Japan Mitsubishi 63 m N/A[35] N/A N/A Expendable TBA
H3-24L  Japan Mitsubishi 63 m N/A N/A 6,500 to TLI Expendable 2024[165]
H3-30S  Japan Mitsubishi 57 m N/A[35] N/A 4,000 to SSO Expendable TBA
Jielong 4  China CALT N/A N/A N/A N/A Expendable N/A TBA
KSLV-III South Korea South Korea KARI 54 m 10,000 3,500 7,000 to SSO

1,800 to TLI

Expendable 2030
Long March 8A  China CALT 50.3 m N/A N/A 6,800 to SSO Expendable TBA
Long March 9  China CALT 114 m 80,000 - 150,000[166] 66,000 53,000 to TLI[166]
40,000 to TMI[167]
Partially/fully reusable 2033[168]
Long March 10  China CALT 89[c] - 93.2 m[d] 70,000 N/A 27,000 to TLI Expendable TBA
Long March 10A  China CALT 67 m 14,000 N/A N/A Partially reusable TBA
18,000 Expendable
Long March 12  China CALT 59 m 10,000 N/A 6,000 to SSO Expendable 2024[169]
Maia France France MaiaSpace 50 m N/A N/A N/A Partially reusable 2025[170]
Miura 5  Spain PLD Space 35.7 m 840 N/A 540 to SSO Partially reusable 2026[171]
MLV  United States Firefly Aerospace 55.7 m 16,300 3,200 2,300 to TLI[172] Expendable 2026[173]
Nebula-1  China Deep Blue Aerospace N/A 1,000 N/A N/A Partially reusable 2024[174]
Nebula-2  China Deep Blue Aerospace TBA 20,000 N/A N/A Partially reusable 2025[174]
Neutron  United States
 New Zealand
Rocket Lab 42.8 m 8,000[e] - 13,000 N/A N/A Partially reusable 2025[175]
15,000 Expendable
New Glenn  United States Blue Origin 98 m 45,000[176] 13,000 N/A Partially reusable 2024[177]
NGLV LEO  India ISRO 88 m 7,700[f] N/A N/A Partially reusable TBA
9,900 Partially reusable
16,900 Expendable
NGLV GEO  India ISRO 92 m N/A 5,200 N/A Partially reusable TBA
25,000 8,900 Expendable
Nova  United States Stoke Space 28.5 m 1,500 N/A N/A Fully reusable TBA
OB-1 Mk1 France France HyPrSpace 11 m 200 N/A N/A Expendable 2026[178]
Pallas-1  China Galactic Energy 42 m 5,000 N/A 3,000 to SSO Partially reusable 2024[179]
Prime  United Kingdom Orbex 19 m 180 N/A 100 to SSO[g][180] Expendable 2025[181]
RFA One  Germany RFA 30 m 1,600[182] 450[182] 1,300 to SSO Expendable 2025[183]
Rokot-M  Russia Khrunichev N/A 1,950 N/A N/A Expendable 2024[184]
RS1 B2  United States ABL Space Systems 27 m 1,350[185] 400 975 to SSO
750 to MEO
Expendable TBA[186]
ŞİMŞEK-1 Turkey Turkey Roketsan N/A 400 N/A N/A Expendable 2027
Siraya Taiwan Taiwan TASA 25 m 200 N/A N/A Expendable N/A TBA
Sirius 1 France France Sirius Space 24.7 m N/A N/A 175 to SSO Expendable N/A 2025
Skyrora XL  United Kingdom Skyrora 22.7 m 315 N/A 315 to SSO[187] Expendable 2025[188]
GYUB[189] South Korea South Korea MND 26.8 m 500[190] N/A N/A Expendable N/A
SLS Block 1B[h]  United States NASA / Boeing
Northrop Grumman
111 m 105,000[191] N/A 37,000 to TLI[192] Expendable 2028
SLS Block 2[i]  United States NASA / Boeing
Northrop Grumman
111 m 130,000[193] N/A 45,000 to HCO[192] Expendable 2033
SL1  Germany HyImpulse 30 m 500 N/A N/A Expendable 2025
Soyuz-5 (Irtysh)  Russia TsSKB-Progress
RSC Energia
61.87 m 18,000[194] N/A 2,500 to GEO Expendable 2025[195]
Soyuz-7 (Amur)  Russia JSC SRC Progress 55 m 10,500[196] 2,600 4,700 to SSO Partially reusable 2028
13,600[196] Expendable
Spectrum  Germany Isar Aerospace 28 m 1,000[197] N/A 700 to SSO[197] Expendable 2025[198]
Starship Block 2[137]  United States SpaceX 124.4 m[138] 100,000[138] N/A N/A Partially reusable 2025
Terran R  United States Relativity Space 82 m 23,500 5,500[199] N/A Partially reusable 2026[199]
33,500 Expendable
Tianlong-3  China Space Pioneer 71 m 17,000 N/A 14,000 to SSO Partially reusable 2024[174]
Tronador II-250 Argentina Argentina CONAE 27 m 500 N/A N/A Expendable 2030
Vega-E  Europe ESA ASI 36.2 m 3,000[200] N/A N/A Expendable 2026
Vikram 1[201]  India Skyroot Aerospace[202] 20 m 315 to 45º inclination 500 km LEO N/A 200 to 500 km SSPO Expendable 2024[203]
Vikram 2[201]  India Skyroot Aerospace N/A 520 to 45º inclination 500 km LEO N/A 410 to 500 km SSPO Expendable TBA
Vikram 3[201]  India Skyroot Aerospace N/A 720 to 45º inclination 500 km LEO N/A 580 to 500 km SSPO Expendable TBA
Volans V500 Singapore Singapore Equatorial Space Systems N/A 150 N/A N/A Expendable N/A 2026
Vulcan Centaur VC0  United States ULA 61.6 m 10,800 3,500 2,300 to TLI Expendable TBA
Vulcan Centaur VC4  United States ULA 61.6 m 24,600 11,700 4,900 to GEO
9,200 to TLI
Expendable 2024[204]
Vulcan Centaur VC6  United States ULA 61.6 m 27,200[205] 14,400[205] 6,500 to GEO
11,500 to TLI
Expendable 2025
Zephyr France France Latitude 19 m 100 N/A 80 to SSO Expendable 2025
Zero  Japan Interstellar Technologies 32 m 800 N/A 250 to SSO Expendable 2025
Zhuque-2 B2  China LandSpace 49.5 m 6,000[136] N/A 4,000 to SSO[136] Expendable TBA
Zhuque-3  China LandSpace 76.6 m 12,500 (RTLS)[174] N/A N/A Partially reusable 2025[174]
18,300 (barge)[174] Partially reusable
21,000[206] Expendable
Zuljanah  Iran Iranian Space Agency 25.5 m 220[207] N/A N/A Expendable TBA
  1. ^ Suborbital flight tests and on-pad explosions are excluded, but launches failing en route to orbit are included.
  2. ^ provides the first stage, including engines
  3. ^ Height for uncrewed version
  4. ^ Height for crewed version
  5. ^ When first stage returned to launch site
  6. ^ When first stage returned to launch site
  7. ^ Reference altitude 500 km
  8. ^ with EUS
  9. ^ with EUS and
    advanced boosters

Retired rockets

[edit]

Launch systems by country

[edit]

The following chart shows the number of launch systems developed in each country, and broken down by operational status. Rocket variants are not distinguished; i.e., the Atlas V series is only counted once for all its configurations 401–431, 501–551, 552, and N22.

10
20
30
40
50
AUS
BRZ
CHN
EUR
ESP
FRA
IND
IRN
ISR
JPN
NKR
NZL
RUS
SKR
TWN
UKR
UK
USA
  •   Operational
  •   In development
  •   Retired

See also

[edit]

Notes

[edit]
  1. ^ There are many different methods. Each mestylethod has drawbacks and advantages, and spacecraft propulsion is an active area of research. However, most spacecraft today are propelled by forcing a gas from the back/rear of the vehicle at very high speed through a supersonic de Laval nozzle. This sort of engine is called a rocket engine.
  2. ^ The first medieval rockets were solid-fuel rockets powered by gunpowder; they were used by the Chinese, Indians, Mongols and Arabs, in warfare as early as the 13th century.
  3. ^ Such as the Pegasus rocket and SpaceShipOne.
  4. ^ Most satellites have simple reliable chemical thrusters (often monopropellant rockets) or resistojet rockets for orbital station-keeping and some use momentum wheels for attitude control. Soviet bloc satellites have used electric propulsion for decades, and newer Western geo-orbiting spacecraft are starting to use them for north-south stationkeeping and orbit raising. Interplanetary vehicles mostly use chemical rockets as well, although a few have used ion thrusters and Hall effect thrusters (two different types of electric propulsion) to great success.

References

[edit]
  1. ^ a b c d e f g h i j k Krebs, Gunter. "Angara (cluster)". Gunter's Space Page. Retrieved 20 July 2024.
  2. ^ a b c Krebs, Gunter. "Angara-1.2". Gunter's Space Page. Retrieved 20 July 2024.
  3. ^ "Angara-1 to inaugurate new rocket family". russianspaceweb.com. Retrieved 2023-11-20.
  4. ^ a b c d Lagier, Roland (March 2018). "Ariane 6 User's Manual Issue 1 Revision 0" (PDF). Arianespace. Archived from the original (PDF) on 11 November 2020. Retrieved 27 May 2018.
  5. ^ a b Lagier, Roland (March 2018). "Ariane 6 User's Manual Issue 2 Revision 0" (PDF). Arianespace. Retrieved 20 July 2024.
  6. ^ Krebs, Gunter. "Ariane-6". Gunter's Space Page. Retrieved 20 July 2024.
  7. ^ a b c "Atlas V". ULA. Retrieved 2023-11-20.
  8. ^ a b "Atlas-5(551) (Atlas-V(551))". Gunter's Space Page. Retrieved 2023-11-20.
  9. ^ Egan, Barbara [@barbegan13] (15 October 2016). "@torybruno @ulalaunch @baserunner0723 We are calling the config N22. No payload fairing with the Starliner on board" (Tweet). Archived from the original on 5 December 2022. Retrieved 20 March 2023 – via Twitter.
  10. ^ a b Percival, Claire (2022-05-29). "OFT-2 CST-100 Starliner (Uncrewed) | Atlas V N22". Everyday Astronaut. Retrieved 2023-11-20.
  11. ^ Roulette, Joey (22 December 2019). "'Bull's-eye' landing in New Mexico for Boeing's Starliner astronaut capsule". Reuters. Retrieved 22 December 2019.
  12. ^ a b c Krebs, Gunter. "Ceres-1 (Gushenxing-1, GX-1)". Gunter's Space Page. Retrieved 27 August 2023.
  13. ^ a b c d "Ceres-1". galactic-energy.cn. Retrieved 2023-11-23.
  14. ^ Kim, Jeongmin (1 June 2023). "North Korea rushed satellite launch after seeing ROK rocket success, Seoul says". NK News. Retrieved 2 June 2023.
  15. ^ "Chollima-1". Gunter's Space Page. Retrieved 2023-11-23.
  16. ^ "Electron". Rocket Lab. Retrieved 2023-11-23.
  17. ^ "Rocket Lab Increases Electron Payload Capacity, Enabling Interplanetary Missions and Reusability". Rocket Lab. Retrieved 23 July 2024.
  18. ^ "Completed Missions". Rocket Lab. Retrieved 2022-03-09.
  19. ^ a b "Projects&Products". IHI Aerospace. Archived from the original on 6 April 2011. Retrieved 8 March 2011.
  20. ^ a b c d Krebs, Gunter. "Epsilon". Gunter's Space Page. Retrieved 18 January 2019.
  21. ^ a b c d e "SpaceX - Falcon 9". SpaceX. Retrieved 23 July 2024.
  22. ^ Elon Musk (26 February 2024). "Due to continued design improvements, this Falcon 9 carried its highest ever payload of 17.5 tons of useful load to a useful orbit".
  23. ^ Either 2 or 3 boosters recoverable
  24. ^ Musk, Elon. Making Life Multiplanetary. SpaceX. Event occurs at 15:35. Archived from the original on 2021-12-12. Retrieved 22 March 2018 – via YouTube. BFR in fully reusable configuration, without any orbital refueling, we expect to have a payload capability of 150 tonnes to low Earth orbit and that compares to about 30 for Falcon Heavy
  25. ^ Krebs, Gunter. "Falcon-Heavy (Block 5)". Gunter's Space Page. Retrieved 23 July 2024.
  26. ^ a b c d "SpaceX - Falcon Heavy". SpaceX. Retrieved 24 July 2024.
  27. ^ a b "Alpha Launch Vehicle". Firefly Aerospace. Retrieved 2023-11-26.
  28. ^ "Missions Archive". Firefly Aerospace. Retrieved 2023-11-26.
  29. ^ a b c Krebs, Gunter. "Yinli-1 (Gravity-1, YL-1)". Gunter's Space Page. Retrieved 11 January 2024.
  30. ^ a b "Indian Space Research Organisation - Geosynchronous Satellite Launch Vehicle Mark II". isro.gov.in. Retrieved 2023-11-26.
  31. ^ Krebs, Gunter. "GSLV". Gunter's Space Page. Retrieved 19 December 2018.
  32. ^ a b "H-IIA Launch Vehicle" (PDF). JAXA. Retrieved 29 July 2024.
  33. ^ "H-IIA – User's Manual" (PDF). 4.0. Mitsubishi Heavy Industries, MHI Launch Services. February 2015. YET04001. Retrieved 4 September 2018.
  34. ^ Krebs, Gunter. "H-2A-202". Gunter's Space Page. Retrieved 29 July 2024.
  35. ^ a b c Only the X00 version of the H3 is intended for LEO launches.[failed verification] The higher capability X02 and X03 variants could presumably launch significantly more payload to LEO, but are not specified for this mission. Space Launch Report: H3 Data Sheet[usurped],[dead link] retrieved 20 Feb. 2019/
  36. ^ Krebs, Gunter. "H-3-22". Gunter's Space Page. Retrieved 29 July 2024.
  37. ^ Krebs, Gunter. "Shuang Quxian-1 (SQX-1, Hyperbola-1)". Gunter's Space Page. Retrieved 28 August 2023.
  38. ^ "Hyperbola-1 User Manual" (PDF). i-space. Retrieved 29 July 2024.
  39. ^ a b "Shuang Quxian-1 (SQX-1, Hyperbola-1)". Gunter's Space Page. Retrieved 2023-11-27.
  40. ^ "China's Jielong 1 smallsat launcher successful on first flight – Spaceflight Now". Retrieved 2023-11-27.
  41. ^ Krebs, Gunter. "Jielong-1 (Smart Dragon-1, SD 1)". Gunter's Space Page. Retrieved 2 November 2019.
  42. ^ a b Krebs, Gunter. "Jielong-3 (Smart Dragon-3, SD 3)". Gunter's Space Page. Retrieved 9 December 2022.<